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SOLUTION OF NONAUTOMODELED PROBLEMS
OF BOUNDARY-LAYER THEORY TAKING INTO
ACCOUNT NONSTATIONARY CONJUGATE HEAT
EXCHANGE AND BLOWING

V. I. Zinchenko and E. G. Trofimchuk UDC 532.526.2

The results of an investigation of conjugate heat exchange when a supersonic flow of gas flows
around a spherical shell when gas blows from the surface of the material are presented,

Theoretical and experimental investigations [1] of the effect of blowing on heat flows to the surface of
bodies lead to problems of the supersonic flow of a perfect gas around a porous or perforated spherical shell.
Because of the need to take into account the inertia of the heat transfer in the shell material one must solve a
combined heat and mass transfer problem, since when the blowing law of the contour of the body is assigned

arbitrarily, the heat-transfer coefficient will be the required function of the process and it is difficult to use a
separate formulation.

As in [2-4], which are devoted to calculating conjugate heat exchange in the boundary layer, we con-
sidered a system of nonautomodeled equations of the boundary layer, we used the nonstationary equation of
heat conduction for the material of the body, taking porosity into account, and on the boundary of separation of
the media we used the condition of conservation of energy.

Consider the system of equations of the laminar boundary layer [4]
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The equation of conservation of energy in a solid porous body, assuming the process to be one~-dimen~
sional, and that the medium is at the same temperature, has the form
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We used a natural system of coordinates when writing Eqgs, (1)-(3). The coordinate y,; for the body is
directed into the material normal to the surface. We assumed that (1~ yi)z(pv)gqo = (PV) gwPw Within the
pores of the material because of our assumption of the quasistationary nature of the equation of continuity {5].
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We assumed that the gas which is blown has the same composition as the gas of the incoming flow, and that the
porosity remains unchanged during the process. In addition, we used the law of conservation of mass (pv) gy °
Pw =—(PV) w-

The boundary and initial conditions can be written as follows:
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When writing the boundary-value problem (1)-(7), besides the notation used previously [4] and indicated
at the end of this article, we introduced the following notation: qw = Ay g flR—e , dimensionless heat flow;
— o 1 Y w Umfleoleo
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The use of the quasistationary formulation of the problem implies the instantaneous matching of the
fields in the gas phase with the change in the characteristics of the solid body, which corresponds to estimates
of the relaxation time of the processes in the gaseous and solid phases.

The Prandtl number was taken as 0.7 in the numerical integration, and we used Sutherland's law for the
coefficient of viscosity. Besides the assumption that cp is constant, when carrying out the numerical integra-
tion the class of materials with specified porosity was limited in such a way that the second terms in the ex-
pressions for 7 and 7p could be neglected. In addition, in view of the relatively small temperature drop
across the shell the thermal characteristics of the material were assumed to be constant quantities.

The boundary-value problem (1)-(7) was integrated using a difference scheme, obtained by an itera-
tional-interpolational method [6]. The error of the approximation of the initial system of differential equa-
tions and boundary conditions was O(an)? + O(As), 0O(ay;)? + O(AT). The difference scheme obtained ensured
a stable calculation for different laws of blowing, and a number of calculations were carried out up to large
time values T, when, within the framework of the specified formulation, quasistationary flow occurs in the
porous body. This enabled us to compare the numerical and analytical solutions.

The initial boundary-value problem includes the following parameters: Mc, K, adiabatic index; Pr,
®_c0y OyH, V RePrheo/ A = A, conjugation parameter, characteristic for problems of conjugate heat exchange;
1/R, relative thickness of the porous wall; the blowing law (pv)y(s); and also 7; and ¢ ;.

For the numerical integration we varied the parameters M, the temperature @y, which was taken
equal to @_e, A, and Ly. We used two forms of the relation (ov)w(s): (PV)y = const, (pV)w =—fywolPekelie/
Peoglervm) 0-5  The latter corresponds to the case fy = const = fy,.

We varied the step AT in the calculations, and in a number of versions we varied the step As. The
method of numerical integration employed is the same as in [4].

We will consider the results of a calculation of the boundary-value problem (1)-(7). Figure 1 shows the
change in the dimensionless heat flows qy, and the temperatures Ow and @,k as a function of the longitudinal
coordinate s for different instants of time and different blowing laws. Curves 1, 3, and 6 correspond to the
initial instant of time 7 = 0, and curves 2, 4, 5, and 7-9 were obtained for 7 = 0.07 and correspond to the
quasistationary temperature distribution in the solid porous body. When making the calculations for both blow-
ing laws in the neighborhood of the front critical points, the dimensionless flow rate (P_V)wo was taken to be
the same.
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As can be seen from the graphs, because of the maximum heat flow in the neighborhood of the front
critical point this part of the body becomes heated most strongly, and this is where the maximum tempera-
ture of the surface @y is established. The nature of the variation of ®, and qy over the contour at different
instants of time depends on the blowing law used, and also on the value of the conjugation parameter. As might
have been expected, it can be seen from Fig. 1 that when using the blowing law fi (S) = fy, the relative
change in the heat flux qw(s) and in the temperatures @ (S), ® K (S) over the contour decrease at different
instants of time compared with the case when (pv)y = const.

When the conjugation parameter is increased, other conditions being equal, the temperature of the sur-
face @y increases more strongly at the same physical instant of time, since the removal of heat within the
depth of the shell is much less. The temperature gradient in the solid (8®,/8y,) (7, 0) in this case increases,
while the value of the temperature on the inner wall of the shell ®;x falls. Tt will be shown below that for a
conjugation parameter A = 69.1 the thermal wave does not in fact reach the inner wall of the shell and ® i =
®_ in the neighborhood of the front critical point and on the side surface of the sphere at all instants of time.

Since the calculations were carried out until the process ceased to be quasistationary it is interesting to
obtain an analytical solution for qw and ®y in this case and compare it with the numerical value, This solu~
tion can be found most simply in the neighborhood of the front critical point.

By using the equations for the heat flux, taking blowing into account [7], which, as calculations have
shown, agrees well with the results of numerical integration with known @y, we can write the condition for
conservation of energy at the boundary of separation of the media (5)'in the above notation in the form
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Equation (8) was obtained taking into account the temperature gradient (8@,/8y;) (0), obtained from the

solution of the quasistationary equation of conservation of energy in a porous medium, with constant porosity
of the shell, :

By determining @, from (8), we obtain
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where we have introduced the notation
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The accurate value of @y, can easily be found using iterations of the algebraic equation (9), after which the
dimensionless heat flux gy, is obtained. The values of the blowing parameters used in the calculations cor-
responded to those values of fy, for which the equation for the heat flux [7] holds. One can also use the equa-

tions in [8] as the equations for the heat flux q, from the gaseous phase taking blowing into account.

The dynamics of the formation of the quasistationary values of gy, ®w and @k for the blowing law
(F\—/)W = const = 0.53 are shown in Fig, 2, The broken curves in this figure represent the gquasistationary solu-
tions, which are obtained for @y, aw, from (9) and agree well with the resuits of numerical integration of the
boundary-value problem,

Graphs of the variation of qy and ®y, with time for a conjugation parameter A = 69.1 for different
blowing laws are shown in Fig. 3. Curves 1 and 3 were obtained in the neighborhood of the critical point, and
curves 2, 4-6 correspond to s = 60°, As follows from an analysis of the curves in Figs. 2 and 3, when the
conjugation parameter increases due to a reduction in A4 the physical time taken fo emerge from the quasi-
stationary flow mode decreases.
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Fig. 1. Dimensionless heat fluxes qy, (curves 1, 2, 6, 7), the tem~
peratures @ (curves 3, 4, 8) and ® k (curves 3, 5, 9) as a func~
tion of the longitudinal coordinate s (in degrees) at different in-
stants of time: M_ =4, Tw = 288°K, A =6.91; I/R=0.1; Ty =
300°K. Curves 1-5 correspond to the blowing law (pv)yw = const =
0.53, and curves 6~9 correspond to fy = fyyy == 0.5.

Fig. 2. Dynamics of the variation of the heat flux q (curves 1,
2), the temperature @y (curves 3, 4) and the temperature i
(curves 5, 6) with time at different points of the surface of the
body. The calculated parameters of the curves (1-6) are indi-
cated for Fig. 1. Curves 1, 3, 5 correspond to the neighborhood
of the critical point, and curves 2, 4, 6 are drawn for s = 60°,
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Fig. 3. Dimensionless heat fluxes q; (curves
1, 2, 5) and the surface temperature @y
(curves 3, 4, 6) as a function of time for dif-
ferent blowing laws at different points of the
surface of the body. The calciilated parame-
ters are indicated in Fig. 1 with the excep-
tion of the parameter A =69.1., Curves 1-4
are drawn for (ﬁ)w = (.53, and curves 5, 6
correspond to £y =—0.5.

Figure 4 shows the temperature field in the boundary layer of the body at different instants of time for
different values of s in the case when (pv)y, = 0.53. The analytical solutions for ®, agree with sufficient ac-
curacy with curves 2 and 5 (Fig. 4) , which were drawn for values of T corresponding to the quasistationary
solution. As follows from the behavior of curve 5, for large conjugation parameters (small coefficients A, )
the depth of heating decreases rapidly, and in this case boundary conditions of the first kind can be specified
on the rear wall of the shell, In addition, as calculated data and the analysis (8) show, the effects of taking into
account the curvature of the body can be neglected and we can consider the problem of the heating of the shell
in the plane approximation. In this case, under quasistationary conditions @ (s) and qw(s) will not depend
on the conductivity of the material of the body.

To confirm this the table shows quasistationary values of gy and ®y in the neighborhood of the front
critical point for different values of A, As follows from the data in the table obtained with the theoretical
parameters of Fig. 1, when the conjugation parameter is increased the heat flux and the surface temperature
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Fig. 4. Temperature field in the boundary
layer and the body at different instants of
time 1, 3) 7 =0; 2, 4) 7 = (.07 for differ-
ent values of s. The calculated parameters
for curves 1-4 agree with the data in Fig.
1; curves 1 and 2 correspond to s = 0°, and
curves 3 and 4 correspond to s = 60°. For
curve 5, A =69.1, s = 0°, and T = 0.07.

TABLE 1. Dependence of the Quasistationary Values of the Heat
Flux gy and the Surface Temperature ®y on the Conjugation
Parameter A

A 3,455 ’ 6,010 | 13,820 | 27,620 | 34,550 ‘ 69,100 l 92,130
Tuw ‘{ 0,164 ' 0,166 0,169 0,172 0,173 \ 0,174 ] 0,174
6w 0,573 [ 0,568 | 0,50 | 0,551 | 0,548 1 0,545 | 0,545

are practically the same as the corresponding values of these quantities obtained for the case when the shell
is heated in the plane approximation and are gy = 0.175 and Oy, = 0.545.

After numerical calculations for M, from 3 to 6 and varying the decisive parameters of the problem
foraverypractical range ofvalues, itis established that the results of integration can conveniently be repre-
sented in the form of the ratio of Stanton numbers — an extremely conservative function of the process. Using
the following expressions for the St numbers:

St= Qwvmheopeo/VR_e PwVuly (Tes — Ty), (10)

we obtain the following ratio of the St number at the current point of the surface to St, determined at the front
critical point: :
St 1—0
. _w { 100) . (11)
Sty Juwp (1 —0y)

As calculations show the ratio of the Stanton numbers changes only slightly with time over a large part
of the side surface of a spherical body, despite the considerable variation in the heat flux and the surface tem-
perature as a function of 7. Hence, the ratio of the heat fluxes for a nonisothermal surface at any instant of
time can be expressed with sufficient accuracy for practical purposes in terms of the ratio of the fluxes at the
initial instant of time, for which @y = const:

o <.ﬁw_ )"_(1;@_@2_
Guwo Juo (I—0u) : {12)

In (12) the superscript 0 corresponds to the ratio of the heat fluxes for an isothermal surface. Hence, using
the equation for the heat flux taking the blowing qw, into account, one can obtain the heat flux qy, at any in-
stant of time 7, when the analytical or approximation dependence for (qy /dyw,)° is specified.

Using Eq. (12) it is easy to find an analytical solution for the heat flux and the surface temperature on
the side surface of the sphere in the quasistationary case. In fact, in this case we have
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In Figs. 2 and 3 we compare the results of calculations of the boundary value problem (1)-(7) with the
results of a numerical integration (the broken curves) of the equation of conservation of energy (3) taking the
boundary and initial conditions (5)-(7) into account for a specified value of the heat flux from the gas phase
(13). It is easy to see that in this case the required characteristics, such as ®w (s, 7) and qw (s, 7), obtained
by solving the problem in the conjugate and separate formulation, agree fairly well for the instantaneous in-
stants of time. When the flow process ceases to be quasistationary the surface temperature, found from (13),
on the side surface of the sphere up to 70° differs from the accurate numerical solution by not more than 10-
15% for a blowing law (pv) w = const. When using the blowing law fy, = const, as can be seen from Fig. 3, the
agreement between the solutions is much better.

(13)

Hence, relation (12) for the heat fluxes can be used to solve problems on the heating of porous bodies
with a specified blowing distribution over the sphere.

NOTATION

t[er
Ve
point; x and y, axes in the system of coordinates connected with the body; f, dimensionless current function;
f' = u/ug, dimensionless velocity; I = py/pe e, 2 dimensionless parameter; Pr, Re = vy, PR/ He( Prandtl and
s
Reynolds numbers, respectively; a=2 g Pelletie (r/R)2ds/peltette (1/R), B = a—l— ’Z“e , ¥ =1l /cyTey, dimensionless
: H ue ds

parameters; y; = —y/R; T = t/t4, dimensionless coordinate in the solid and time; © =T/ Tep dimensionless
temperature; h, p, and cp, enthalpy, density, and specific heat, respectively; u, A, viscosity and thermal con-
ductivity, respectively;t, physical time; (pV) w, flow of gas when blowing through the porous shell; vy, =

2heg maximum velocity; ¢, porosity; ¢ =1~ ¢; R, radius of the sphere; L, thickness of the porous shell;
tx = R% Cyx /A%, characteristic time; o, Stefan— Boltzmann constant; &, emissivity; St = dwVmbheoPeo/
V RepVulp (Tep ~ Tw) » Stanton number; B = [—z}m— Z’:a
(Aeo/M4) (1/94) , notation used. The indices e, €0, w, and K are quantities on the external boundary of the
boundary layer, on the external boundary at the slowing-down point, on the surface of the body, and on the in-
ner wall of the shell for y, = I/R, respectively, 1 corresponds to characteristics of the solid component of
the porous shell, and also the temperature of the porous material, g is the gaseous component in the porous
body, 1H is the temperature at the initial instant of time, —* is the temperature of the gas in a cavity of the
shell, and * represents characteristic quantities.

Yy
g q= S.pdy , Dorodnitsyn—Liz variables; s =x/R, angle in radians measured from the critical
3 )

0.5 o
(0)] [0,764Pr=0:820.0 1 0.945f,0l ;7 (1 - 0.282f00)], A= V' RePr -
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