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S O L U T I O N  O F  N O N A U T O M O D E L E D  P R O B L E M S  

O F  B O U N D A R Y - L A Y E R  T H E O R Y  T A K I N G  I N T O  

A C C O U N T  N O N S T A T I O N A R Y  C O N J U G A T E  H E A T  

E X C H A N G E  A N D  B L O W I N G  

V" I .  Z i n c h e n k o  a n d  E .  G.  T r o f i m c h u k  UDC 532.526.2 

The r e su l t s  of an invest igat ion of conjugate heat  exchange when a supersonic  flow of gas  flows 
around a spher i ca l  shell  when gas  blows f r o m  the su r face  of the m a t e r i a l  a r e  presented .  

Theore t i ca l  and exper imen ta l  invest igat ions [ 1] of the effect  of blowing on heat  flows to the su r face  of 
bodies  lead to p ro b l em s  of the supersonic  flow of a pe r f ec t  gas  around a porous  o r  pe r fo ra t ed  spher i ca l  shell.  
Because  of the need to take into account  the iner t ia  of the heat  t r a n s f e r  in the shel l  m a t e r i a l  one mus t  solve a 
combined heat  and m a s s  t r a n s f e r  p rob lem,  since when the blowing law of the contour of the body is ass igned 
a r b i t r a r i l y ,  the h e a t - t r a n s f e r  coeff ic ient  will be the requ i red  function of the p r o c e s s  and it is difficult  to use  a 
s epa ra t e  formulat ion.  

As in [ 2 -4 ] ,  which a r e  devoted to calculat ing conjugate heat  exchange in the boundary layer ,  we con-  
s ide red  a s y s t e m  of nonautomodeled equations of  the boundary layer ,  we used the nons ta t ionary  equation of 
heat  conduction for  the m a t e r i a l  of the body, taking poros i ty  into account, and on the boundary of sepa ra t ion  of 
the media  we used the condition of conserva t ion  of energy.  

Consider  the s y s t e m  of equations of the l amina r  boundary l aye r  [4] 

an o~ ] + I - -  + ~ _ o l a v  av aF 
- -  O~l ~- ~ \ O~l / J On a~laS a~l ~ Os 

a z__ao] ao o .  al l~ + ~  (2) 

The equation of conserva t ion  of ene rgy  in a solid porous  body, a s suming  the p r o c e s s  to be one -d imen-  
sional ,  and that  the med ium is at the s a m e  t empe ra tu r e ,  has the f o r m  

�9 ~p O0, 0 (~  a o , ~  00, [V'R'ePr ~eo (pv--)w 1 2 2 _ _ ]  
az - abq 0--~-~ ) - F  ~ Z,, r z z~(1--b',) " (3) 

We used a natura l  system of coordina tes  when wri t ing Eqs. (1)-(3).  The coordinate  Yl for  the body is 
d i rec ted  into the m a t e r i a l  no rm a l  to the sur face .  We a s sumed  that ( 1 -  Y l)2 (pv )g9  = (pv) g w g w  within the 
po re s  of the ma t e r i a l  because  of our assumpt ion  of the quas i s t a t iona ry  nature  of the equation of continuity [5 ]. 
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We assumed  that the gas which is blown has the same composit ion as the gas of the incoming flow, and that the 
poros i ty  remains  unchanged during the process .  In addition, we used the law of conservat ion of mass  (#v) gw ~ 

~w = - ( P v )  w. 

The boundary and initial conditions can be wri t ten as follows: 

Of_ ~oo, s ) =  1, 0(co, s ) =  Oe, (4) 

S S 

S [; ~ ( 0 ,  s l=O,  f(O, s) = f ~ = - -  (~)wsinsds 2 Pe ~e ue sin2sd s P 

Peo ~te0 vm 
0 0 

qw (0, s) ~ R e  Pr ~o ~@~ --:~ ~ O i  = (0~) Oyl ('~' 0), (5) 

ao~ L/R)= V ~ P r  ~o (~v)~ (O_~ -- O~, (6) 

Ol (0, YO = 0 ,~ .  ( 7 )  

When writing the boundary-value  problem (1)-(7) ,  besides the notation used previously  [4] and indicated 

�9 OT ~ , dimensionless  heat flow; at  the end of this a r t ic le ,  we introduced the following notation: qw = ~.w ~ w vrnheoPe0 

(pv)w = (pv)w V ~  I t - -  , d imensionless  ra te  of flow of gas when blowing through the porous shell; �9 - , 
VrnPeo t .  

�9 ~ l  ~g PtCi r + pgcpg ectRT~o 
~!, pi~ci, pi,ci. ~i, 

The use of the quas is ta t ionary  formulat ion of the problem implies the instantaneous matching of the 
fields in the gas phase with the change in the cha rac te r i s t i c s  of the solid body, which cor responds  to es t imates  
of the relaxat ion t ime of the p r o c e s s e s  in the gaseous and solid phases.  

The Prandt l  number  was taken as 0.7 in the numer ica l  integration, and we used Sutherland's  law for the 
coefficient of viscosi ty.  Besides the assumption that ep is constant, when ca r ry ing  out the numer ica l  in tegra-  
tion the c lass  of ma te r i a l s  with specified poros i ty  was l imited in such a way that the second t e rms  in the ex- 
p ress ions  for  7r and 7rp could be neglected. In addition, in view of the re la t ively  small  t empera ture  drop 
ac ros s  the shell the thermal  cha rac t e r i s t i c s  of the mater ia l  were  assumed to be constant quantities. 

The boundary-value problem (1)-(7) was integrated using a difference scheme, obtained by an i t e ra -  
t ional- interpolat ional  method [6 ]. The e r r o r  of the approximation of the initial sys t em of differential  equa- 
tions and boundary conditions was O (A~?) 2 + O (As), O (Ayi) 2 + O (AZ). The difference scheme obtained ensured 
a stable calculat ion for  different  laws of blowing, and a number  of calculations were  ca r r i ed  out up to large 
t ime values T, when, within the f ramework  of the specified formulation, quas is ta t ionary  flow occurs  in the 
porous body. This enabled us to compare  the numer ica l  and analytical  solutions. 

The initial boundary-value  p rob lem includes the following pa rame te r s :  M~o, g, adiabatic index; P r ,  
| | 1H, ~/RePrXe0/k 1, = A, conjugation pa ramete r ,  charac te r i s t i c  for problems of conjugate heat exchange; 
L/R,  re lat ive thickness of the porous wall; the blowing law (p-'V)w(S);and also 7r~r and ~ 1. 

For  the numer ica l  integrat ion we var ied  the p a r a m e t e r s  Moo, the t empera tu re  | 1H, which was taken 
equal to 0_~ ,  A, and L R. We used two forms  of the relat ion (p'-V)w(S): o (P-~)w = eonst, (P"~)w =-fw0(Pe~eUe / 
pe0~e0Vma) 0.5. The la t ter  cor responds  to the case  fw = const  = fw0. 

We var ied  the step AT in the calculations,  and in a number  of vers ions  we varied the step As. The 
method of numer ica l  integrat ion employed is the same as in [4]. 

We will cons ider  the resu l t s  of a calculation of the boundary-value problem (1)-(7). Figure I shows the 
change in the dimensionless  heat flows qw and the t empera tu res  | and @IK as a function of the longitudinal 
coordinate s for  different instants of t ime and different  blowing laws. Curves 1, 3, and 6 cor respond  to the 
initial instant of t ime T = 0, and curves  2, 4, 5, and 7-9 were  obtained for  T = 0.07 and cor respond  to the 
quas is ta t ionary  t empera tu re  distr ibution in the solid porous body. When making the calculations for  both blow- 
ing laws in the neighborhood of the front  cr i t ica l  points, the dimensionless  flow rate  (P'-~)w0 was taken to be 

the same.  
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As can be seen  f r o m  the graphs ,  because  of the m a x i m u m  heat  flow in the neighborhood of the front  
c r i t i c a l  point this p a r t  of the body b e c o m e s  heated mos t  s t rongly,  and this is where  the m a x i m u m  t e m p e r a -  
ture  of the su r face  | is es tabl ished.  The nature  of the va r ia t ion  of | and qw over  the contour  at d i f ferent  
ins tants  of t ime depends on the blowing law used, and a lso  on the value of the conjugation p a r a m e t e r .  As might  
have been expected,  it can be seen  f r o m  Fig. 1 that when using the blowing law fw (S) = fw0 the re la t ive  
change in the heat  flux qw(s)  and in the t e m p e r a t u r e s  Ow(S), | ove r  the contour d e c r e a s e  at  d i f ferent  
instants  of t ime c o m p a r e d  with the ca se  when (PV)w = const.  

When the conjugation p a r a m e t e r  is inc reased ,  o ther  conditions being equal, the t e m p e r a t u r e  of the s u r -  
face | i n c r e a s e s  m o r e  s t rongly  at the s a m e  phys ica l  instant  of t ime,  s ince the r emova l  of  heat  within the 
depth of the shel l  is much less .  The t e m p e r a t u r e  gradient  in the solid (0@~/0yl) (~', 0) in this case  i n c r e a s e s ,  
while the value of the t e m p e r a t u r e  on the inner  wall  of the shell  | falls.  It  will be shown below that for  a 
conjugation p a r a m e t e r  A = 69.1 the t he rm a l  wave does not in fact  r e ach  the inner  wall  of the shell  and O LK = 
| in the neighborhood of the f ront  c r i t i ca l  point and on the side su r face  of the sphere  at all  instants  of t ime.  

Since the ca lcula t ions  were  c a r r i e d  out until the p r o c e s s  ceased  to be quas i s t a t ionary  it is in teres t ing  to 
obtain an analyt ical  solution for  qw and | in this case  and c o m p a r e  it with the numer i ca l  value. This solu-  
tion can be found m o s t  s imply  in the neighborhood of the front  c r i t i ca l  point. 

By using the equations for  the heat  flux, taking blowing into account [7 ], which, as calculat ions have 
shown, ag rees  well  with the r e su l t s  of n u m e r i c a l  in tegrat ion with known | we can wr i te  the condition for  
conse rva t ion  of ene rgy  at  the boundary  of sepa ra t ion  of the media  (5)"in the above notation in the f o r m  

[0.764Pr_O.61O.o1+O.945f~olO{(l@O.282fwo)][1 du e ]0.5 vm as (o~ (1 - e w o ) -  ~A O4~o = (e~o-- e_~)(~-V>~oX 

Equation (8) was obtained taking into account  the t e m p e r a t u r e  grad ien t  (0| (0), obtained f rom the 
soIution of the quas i s t a t i ona ry  equation of conserva t ion  of energy  in a porous  medium,  with construct po ros i ty  
of the shell .  

By de te rmin ing  | f r om (8), we obtain 

i~ ' + l'x [ 
-5 (,~)moO__~ ]{1 -? [ ( 1  - -  ~ ) - 2 - - I  ]exp [ ~ (~)wo (1 I__L/R)]}(B1 @ -~-~ @awo) -~ (PV)~o 1-1, {9) 

q~o = B (1 - -  O~o ), 
where  we have introduced the notation 

[ ]o.5 4 o.5 B = 1 due (0) [0.764Pr-~176 + 0,9 5f~olwo (1 + 0.282f~o)], 
Vrn ds 

(~>wo =-G,o [ v-~2 TsdU~ (o) jl 0 ~  

The accura te  value of | can eas i ly  be found using i te ra t ions  of the a lgebra ic  equation (9), a f t e r  which the 
d imens ion less  heat  flux qw0 is obtained. The values of the blowing p a r a m e t e r s  used in the calculat ions c o r -  
responded to those values  of fw0 for  which the equation for  the heat  flux [7] holds. One can also use  the equa-  
tions in [8] as the equations for  the heat  flux qw0 f r o m  the gaseous  phase  taking blowing into account. 

The dynamics  of the fo rmat ion  of the quas i s t a t ionary  values of qw, | and | for  the blowing iaw 
(PV)w = const  = 0.53 a r e  shown in Fig. 2. The broken  curves  in this f igure r e p r e s e n t  the quas i s t a t iona ry  solu-  
t ions,  which a r e  obtained fo r  | qw0 f r o m  (9) and ag ree  well  with the resu l t s  of numer i ca l  in tegrat ion of the 
boundary-va lue  p rob l em .  

Graphs  of the va r ia t ion  of qw and | with t ime for  a conjugation p a r a m e t e r  A = 69.1 for  different  
blowing laws a r e  shown in Fig. 3. Curves  1 and 3 were  obtained in the neighborhood of the c r i t i ca l  point, and 
cu rves  2, 4-6 co r r e spond  to s = 60 ~ As follows f rom an analys is  of the cu rves  in Figs.  2 and 3, when the 
conjugation p a r a m e t e r  i n c r e a s e s  due to a reduct ion in Xl,  the physica l  t ime taken to e m e r g e  f r o m  the quas i -  
s t a t ionary  flow mode d e c r e a s e s .  
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Fig. 1. Dimensionless  heat fluxes qw (curves 1, 2, 6, 7), the t em-  
pe ra tu re s  O w (curves 3, 4, 8) and | (curves 3, 5, 9) as a func- 
tion of the longitudinal coordinate  s (in degrees)  at different in- 
stants of time. M~ = 4, T~ = 288~ A = 6.91; L/R = 0.1; T1H = 
300~ Curves  1-5 cor respond  to the blowing law (~'V)w = const  = 
0.53, and curves  6-9 cor respond  to fw = fw0 = - 0 . 5 .  

Fig. 2. Dynamics of the var ia t ion of the heat  flux qw (curves 1, 
2), the t empera tu re  O w (curves  3, 4) and the t empera tu re  OtK 
(curves  5, 6) with t ime at different points of the surface  of the 
body. The calculated p a r a m e t e r s  of the curves  (1-6) are  indi- 
cated for  Fig. 1. Curves 1, 3, 5 cor respond  to the neighborhood 
of the c r i t ica l  point, and curves  2, 4, 6 a re  drawn for  s = 60 ~ 

~Stv 

g~ j 

u 
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Fig. 3. Dimensionless  heat  fluxes ql (curves 
i, 2, 5) and the surface  t empera tu re  | 
(curves  3, 4, 6) as a function of time for dif- 
ferent  blowing laws at different points of the 
sur face  of the body. The calculated pa r ame-  
ters  are  indicated in Fig. 1 with the excep- 
tion of the p a r a m e t e r  A = 69.1. Curves 1-4 
a re  drawn for  (PV)w = 0.53, and curves  5, 6 
cor respond  to fw = -  0.5. 

Figure  4 shows the t empera tu re  field in the boundary layer  of the body at different instants of t ime for  
different  values of s in the case  when (~V)w = 0.53. The analytical  solutions for O i agree with sufficient ac-  
curacy  with curves  2 and 5 (Fig. 4 ) ,  which were drawn for values of T corresponding to the quasis ta t ionary 
solution. As follows f rom the behavior  of curve  5, for  large conjugation p a r a m e t e r s  (small  coefficients Xi, ) 
the depth of heating dec reases  rapidly, and in this case  boundary conditions of the f i r s t  kind can be specified 
on the r e a r  wall of the shell. In addition, as calculated data and the analysis  (8) show, the effects of taking into 
account the curvature  of the body can be neglected and we can consider  the problem of the heating of the shell 
in the plane approximation. In this case ,  under quas is ta t ionary  conditions Ow(S ) and qw(s) will not depend 
on the eonduetivity of the mater ia l  of the body. 

To conf i rm this the table shows quas is ta t ionary  values of qw and | in the neighborhood of the front  
c r i t ica l  point for  different  values of A. As follows f rom the data in the table obtained with the theoret ical  
p a r a m e t e r s  of Fig. 1, when the conjugation pa rame te r  is increased  the heat  flux and the surface tempera ture  
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Fig.  4. T e m p e r a t u r e  f ie ld  in  the b o u n d a r y  
l a y e r  and the body at  d i f f e r en t  i n s t a n t s  of 
t ime  1, 3) T = 0 ;  2, 4) T = 0. 07 for  d i f f e r -  
en t  va lues  of s.  The c a l c u l a t e d  p a r a m e t e r s  
fo r  c u r v e s  1-4  a g r e e  with the da ta  in  Fig.  
1; c u r v e s  1 and 2 c o r r e s p o n d  to s = 0 ~ and 
c u r v e s  3 and 4 c o r r e s p o n d  to s = 60 ~ F o r  
c u r v e  5, A = 69.1, s = 0 ~ and 7 = 0.07. 

TABLE 1. Dependence  of the Q u a s i s t a t i o n a r y  Values  of the Heat  
F lux  qw and the Sur face  T e m p e r a t u r e  O w on the Conjuga t ion  
P a r a m e t e r  A 

A 3,455 6,910 13,820 27,620 34,550 69,100 92,130 

qw 0,164 0,166 0, I69 0 , 1 7 2  0,I73 0,174 0,174 

O w 0,573 0,568 0,560 0,551 0,548 0,545 0,545 

a r e  p r a c t i c a l l y  the s a m e  as the c o r r e s p o n d i n g  va lues  of these  quan t i t i e s  ob ta ined  for  the ca se  when the she l l  
i s  hea ted  in the p l ane  a p p r o x i m a t i o n  and a r e  qw = 0.175 and O w = 0.545. 

A f t e r  n u m e r i c a l  c a l c u l a t i o n s  for  Moo f r o m  3 to 6 and v a r y i n g  the d e c i s i v e  p a r a m e t e r s  of the p r o b l e m  
for  a v e r y p r a c t i c a l  r a n g e  of v a l u e s ,  i t  i s  e s t a b l i s h e d  that  the r e s u l t s  of i n t e g r a t i o n  can  c o n v e n i e n t l y  be r e p r e -  
s en t ed  in  the f o r m  of the r a t i o  of S tanton  n u m b e r s  - an e x t r e m e l y  c o n s e r v a t i v e  f tmction of the p r o c e s s .  Us ing  
the fol lowing e x p r e s s i o n s  for  the St n u m b e r s :  

St = qwvmheoPeo/l/~e p| (Teo --  T,~), (10) 

we ob ta in  the fo l lowing r a t io  of the St n u m b e r  at  the c u r r e n t  po in t  of the s u r f a c e  to St 0 d e t e r m i n e d  at  the f ron t  
c r i t i c a l  poin t :  

St q~ (1--@~o) 
St0 q~o (1 - -  0~) (11) 

As c a l c u l a t i o n s  show the r a t io  of the Stanton  n u m b e r s  changes  only s l i gh t ly  with t ime  over  a l a r g e  p a r t  
of the s ide  s u r f a c e  of a s p h e r i c a l  body,  desp i t e  the c o n s i d e r a b l e  v a r i a t i o n  in  the hea t  flux and the s u r f a c e  t e m -  
p e r a t u r e  as  a func t ion  of T. Hence,  the r a t i o  of the hea t  f luxes  for  a n o n i s o t h e r m a l  s u r f a c e  at  any i n s t a n t  of 
t i m e  can  be  e x p r e s s e d  with su f f i c i en t  a c c u r a c y  fo r  p r a c t i c a l  p u r p o s e s  in  t e r m s  of the r a t io  of the f luxes at  the 
i n i t i a l  i n s t a n t  of t ime ,  for  which  @w = eonst :  

q~0 \ q~o / / (1--O~0) (12) 

In (12) the s u p e r s c r i p t  0 c o r r e s p o n d s  to the ra t io  of t h e  hea t  f luxes  for  an i s o t h e r m a l  su r f ace .  Hence ,  u s ing  
the equa t ion  for  the  hea t  flux tak ing  the b lowing qw0 into account ,  one can  ob ta in  the hea t  flux qw at any i n -  
s t a n t  of t ime  T, when the a n a l y t i c a l  o r  a p p r o x i m a t i o n  dependence  for  (qw/qw0) 0 is  speci f ied .  

Us ing  Eq. (12) i t  i s  e a s y  to f ind an a n a l y t i c a l  so lu t ion  for  the hea t  flux and the s u r f a c e  t e m p e r a t u r e  on 
the s ide  s u r f a c e  of the s p h e r e  in  the q u a s i s t a t i o n a r y  case .  In fact,  in  this  ca se  we have 
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•  1 - -1 -L/R?]}+~v)wO- |  q~ /~~215 
(13) 

{ 1 + [ ( 1  _ L ' - 2  . ]  ] A ( P v ) ~ ( 1  1 L / R ) ] } + ( p - - v ) ~ ] - t ,  
x --k-) - '  J , 

q ~ = B ( - . ~  qt~ )~ - -  O~o). 
\ qwo 

In Figs.  2 and 3 we c o m p a r e  the r e su l t s  of ca lcula t ions  of the boundary  value p r o b l e m  (1)-(7)  with the 
r e su l t s  of a n u m e r i c a l  in tegra t ion  (the b roken  cu rves )  of the equation of conserva t ion  of ene rgy  (3) taking the 
boundary  and init ial  conditions (5)-(7)  into account  for  a specif ied value of the heat  flux f r o m  the gas phase  
(13). It  is e a sy  to see  that  in this ca se  the requ i red  c h a r a c t e r i s t i c s ,  such as | T) and qw(s ,  T), obtained 
by solving the p r o b l e m  in the conjugate and s ep a ra t e  formulat ion,  agree  f a i r ly  well  for  the instantaneous in- 
s tants  of t ime.  When the flow p r o c e s s  c e a s e s  to be  quas i s t a t iona ry  the su r f ace  t e m p e r a t u r e ,  found f r o m  (13), 
on the side su r f ace  of the s phe re  up to 70 ~ d i f fers  f r o m  the accura t e  n u m e r i c a l  solution by not m o r e  than 10- 
15% for  a blowing law (pv) w = const .  When using the blowing law fw = const ,  as can be seen f r o m  Fig. 3, the 
a g r e e m e n t  between the solut ions is much be t te r .  

Hence,  r e la t ion  (12) for  the heat  f luxes can be used  to solve p rob l ems  on the heating of porous  bodies  
with a speci f ied  blowing dis t r ibut ion o v e r  fl~e sphere .  

NOTATION 

Y Ueg ! ~, ~ = - - ~  p@ , Dorodnitsyn-Liz variables; s = x/R, angle in radians measured from the critical 

point; x and y, axes in the system of coordinates connected with the body; f, dimensionless current function; 
f' = U/Ue, dimensionless velocity; l = pl~/p e ~e, a dimensionless parameter; Pr, Re = VmPe0R/~e0, Prandtl and 

�9 i 1 dtze = ue2 d imens ion less  Reynolds number s ,  r e spec t ive ly ;  ~ = 2 b Pe~eue (r/R)2ds/peUeUe (r/R) 2, ~ = ~Z--u e --ds ' ~ / CP%~ 

p a r a m e t e r s ;  Yl = --y/R; T = t / t , ,  d imens ion les s  coord ina te  in the solid and t ime;  O = T/Te0,  d imens ion less  
t e m p e r a t u r e ;  h, p, and Cp, enthalpy, density,  and specif ic  heat,  r e spec t ive ly ;  ~, k, v i scos i ty  and t h e r m a l  con- 
ductivity,  r e spec t ive ly ;  t ,  phys ica l  t ime;  (p-~) w, flow of gas  when blowing through the porous  shell ;  v m = 
~}'2he0, m a x i m u m  veloci ty;  r  poros i ty ;  r  = 1 - ~;  R, rad ius  of  the sphere ;  L, th ickness  of the porous  shell ;  
t .  = R 2 P t . C t , / ~ t , ,  c h a r a c t e r i s t i c  t ime;  a ,  S t e f a n - B o l t z m a n n  constant;  e, emis s iv i ty ;  St = qwvmhe0Pe0/ 

I 1 d u  e "]0.5 
-- [0,764Pr l~o q- 0.945fwoir U (1 +0:282fwo)], A = F~R-~Pr �9 ~f~p~oV~Cp (Te0 T w ) ,  Stanton number ;  a = ~ ~ (0)J -0.6 0., 0.s 

(ke0/Xt,) ( 1 / ~ 0 ,  notat ion used. The indices e, e0, w, and K a re  quanti t ies  on the ex te rna l  boundary  of the 
boundary  layer ,  on the ex te rna l  boundary  at the s lowing-down point, on the su r face  of the body, and on the in-  
ne r  wall  of the shel l  for  Yl = L/R, respec t ive ly ,  1 co r r e sponds  to c h a r a c t e r i s t i c s  of the solid component  of 
the porous  shell ,  and a lso  the t e m p e r a t u r e  of the porous  m a t e r i a l ,  g is the gaseous  component  in the porous  
body, 1H is the t e m p e r a t u r e  at  the init ial  instant  of t ime,  - ~  is the t e m p e r a t u r e  of the gas in a cavi ty  of the 
shell ,  and * r e p r e s e n t s  c h a r a c t e r i s t i c  quant i t ies .  
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